成的,但退而求其次,五边形可以满足这个要求。
因为五边形的五个顶点如果任选三个组成三角形, 至少会有两个顶点相邻。只要保证五边形的边长都为单位1,那么它们所组成的三角形就必然会有一条边长度为1。
可是如果选用五边形的话, 五个顶点加一个中心点……总共只有六个点。题目给出的要求是在一个平面内有七个点,多余的那一点能摆在哪儿?
涂化不知不觉已经陷入了困境。他拿着七颗星点在空中摆来摆去,始终没有发现合适的组合办法。
四周一片空旷,没有人能来帮他。
涂化不禁回想起自己惨不忍睹的数学成绩,以及在前面所经历的关卡中,遇到数学难题时来自队友和苏格池的帮助。
他突然明白过来,这次的这个题目是他必须要经历的一道坎。他能在中走到最后,不可否认他身上的确是有一些小聪明的,但更多的则来源于队友的协助。他数学成绩差,所以每次遇到专业的数学题目,他总是力不从心。队友在的时候会有人帮他出谋划策,可终究有他独自面对的这一天。
所以他现在必须独立完成这道题目。他不仅要通关,还要证明自己,数学成绩并不是他的软肋,而是一株不断生长的幼苗,随着他对数学世界的探索和领悟,这颗幼苗总有一日,能为他遮风挡雨。
他必须相信自己,能在中走这么远,他的数学其实并不差,只是没有找到方向而已。
现在……就是他探索方向的时刻。
涂化望着浩瀚无垠的虚空,轻轻闭上了眼睛,脑海中那七颗如北斗七星似的光点正在飞速的组合变换,每一种组合方式都在他心中进行过缜密的演算。
至少有一边相等……五边形……等边三角形……
涂化倏地睁开眼,瞬间醍醐灌顶。五边形的任意三个顶点可以组成至少有一条边长为1的三角形,但加上中心点,平面内总共只有六个点。
可是……谁说中心点只能有一个的?
只要把多余的两个点全部放在五边形的内部,就可以完成题目中所表达的要求!
涂化连忙将手边的七个星点拿过来,开始在空中进行拼凑。他的想法很明确,这个五边形虽然每条边的边长为单位1,但这个五边形却不能是正五边形。
首先他用三个点拼成了一个边长为单位1的等边三角形,接着将第四个点放在等边三角形的下方,这样这四个点连接起来,就形成了一个由两个等边三角形堆砌形成的菱形。
他手里还剩三个星点,只要这三个点可以再组成一个一模一样的菱形,且外围的五个点构成五边形,这个排序方法就可以成立。
所以说第二个菱形最上方的顶点必须与前一个菱形共点。
涂化将第一个菱形的上顶点同时作为第二个菱形的上顶点,然后平分夹角,使两个菱形重合,这样七个点排列的图形从外围看就是一个五条边都相等的五边形,而五边形的内部有两点。
这两点分别是2号菱形的左顶点和1号菱形的右顶点。
按照这个方法组合出来的图形中,任意三点组合的三角形,必然有一条边与菱形共边,也就是说,至少有一条边的长度为单位1。
涂化将那七个点按照顺序和角度排列整齐之后,七个光点突然迸射出七彩的光芒。下一刻,光芒就将涂化吸了进去。
转眼间,涂化又回到了魔方上。
他脚下的红色魔方色块格已经变成了实体,而他正瘫坐在色块上,众人都吃惊的望着他。站在他身旁的沈思易连忙将他扶起来,惊喜道:“你回来了,涂化!”
涂化连忙看向和他一起跌入魔方中的两个女生的方向,却发现他们原本所处的色块格已经变成了实体,但两人却没有回来。
【叮——】
【挑战者刘薇、章小雨淘汰。】
涂化是两轮转动之后,唯一从魔方中回来的挑战者。将魔方还原总共需要13步,而在进行了3步的时候,就已经淘汰掉了4名挑战者。
“所以魔方里……到底有什么?”众人满心期待地看着涂化,希望他能给出一个答案。
涂化将自己在魔方中经历的关卡一五一十地讲了出来,不论难度到底怎么样,至少其他人心里都有了底,知道自己即将面对的是什么,也算是提前打了预防针。
涂化觉得其实他遇到的那道题不算难,但是进入魔方世界的五个人只有他一个人回来了,要么是他运气好,要么就是系统在题目的设置上另有玄机。来不及思考其中的原因,下一轮转动就要开始了。
这次魔方男指定的是中间的那条轴,向后方转动两圈。处于中间轴上的人数比较多,总共有五个人,其中就包括沈思易和苏格池。
涂化不免有些紧张,毕竟他的两个队友都在这里,如果两人在魔方中遭遇不测,那么接下来的闯关过程将会减少一大半的助力。他有些不安的看向苏格池,苏格池却向他投来一个安心的眼神,五个人一起跳入魔方